

Our country, our future 525/1

S6 CHEMISTRY

Exam 4

PAPER 1

DURATION: 2 HOUR 45 MINUTES

Instructions:

- Attempt all questions in section A and six questions in section B
- All questions are to be answered in the spaces provided.

SECTION A:

1.

Attempt all questions in this section.

The standard electrode potential E of lead and magnesium are shown l	oelow
$Pb^{2+} + 2e \xrightarrow{-} Pb$ $E^{\theta} / Volts$ -0.13	
$Mg^{2+} + 2e^{-} \longrightarrow Mg$ -2.40	
(a) Write the cell convention for the cell that can be formed	(1m)
	• • • • • • • • • • •
	• • • • • • • • • • •
(b) Write the equation for the	
(i) reaction taking place at each electrode	(2m)
	• • • • • • • • • • •
(;;) arranall magation	(1)
(ii) overall reaction	(1m)
(c) Calculate the e.m.f of the cell	(1m)
(c) carestate the cann of the con	, ,

More exams? browse: digitaltears.co.ug

For consultations call: +256 776 802709

2.	Complete the following equations and in each case write a mechanic reaction	sm for the
	(a) $CH_3CH_2CH_2OH$ Conc. H_3PQ_4	(3m)
	180°C	
	(b) $-CHCH_2Br$ $-EtO/EtOH$ heat	(2)
2		(2.)
3.	(a) (i) What is meant by the term ionisation energy of an element?	(2)
	(ii) Write an equation to show the first ionisation of magnesium	(1 ½)
	(b) The second and third ionisation energies of magnesium are 1450 7730 kJmol ⁻¹ respectively. Give a reason for the large different second and the third ionisation energies of magnesium.	te between the (2)
		,
	••••••	

4.	Name one reagent that can pairs of compounds and sta reacted with components			reen each of the following in each case if the reagents
	(a) COCH ₂ CH ₃	and	COCH ₃	(3)
	Reagent			
	Observation			
	(b) CH ₃ CH ₂ CH ₂ CH ₂ OH a	nd (CH ₃)	3 COH.	(3 m)
	Observation			
5.	The Ostotic pressure of a s solution is 1200 Nm ⁻² at 2 (a) Calculate the relative n	25°C.		polymer x per 100cm ³ of a
		• • • • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •		
		• • • • • • • • • • • • • • • • • • • •		

	rmine the number of monomers in x (The molecular mass of t is 28)	(1m)
(a) One (i)	of the properties of transition metals complex ion formation Define the term 'Complex ion'	(2m)
(ii)	Explain why transition metals form many complexes	(2m)
respectiv (i) iron	N) ₆ ³⁻ and (CuCl ₄) ²⁻ are complexes formed by iron and copporely. State: the oxidation state of	
respectiv (i) iron	vely. State: the oxidation state of	
respective (i) iron	vely. State: the oxidation state of	
respective (i) iron copp	the co-ordination number of	
respective (i) iron	the oxidation state of the oxidation state of the co-ordination number of iron	(1m)
respective (i) iron	the oxidation state of the co-ordination number of iron copper (1m) of aqueous solution contains 5.00g of butanoic acid. Calculatoic acid extracted when the solution was shaken: 50cm³ of a solvent R. (The distribution coefficient K _D of butanoic acid.)	te the mass

(b) T	wice with 2	5cm ³ of	solven	t R				(2)
								•••••
•••								
Nam	ne one reage	nt that c	can be u	used to dist	inguish bet	ween each	of the f	followin
pairs	ne one reage of compour cted with th	nds and	state wl ounds	ased to dist hat would and	inguish bet	ween each d in each ca CH ₂ CH	ase if th	e reage
pairs is rea	of compour	nds and and are composed of the composed of th	state wl ounds	hat would	inguish bet	d in each ca	ase if th	(2½
pairs is rea	of compour	nds and and are composed of the composed of th	state wl ounds	hat would	inguish bet	d in each ca	ase if th	(2½
pairs is rea	of compour	nds and and are composed of the composed of th	state wl ounds	hat would	inguish bet	d in each ca	ase if th	(2½
pairs is rea	of compour	nds and and are composed of the composed of th	state wl ounds	hat would	inguish bet	d in each ca	ase if th	(2½

9.	When 142cm ³ of a hydrocarbon Q, of molecular mass 58 was explode	d with
	excess oxygen and cooled to room temperature, the volume of the residue.	dual gas
	was 694cm ³ . After addition of concentrated potassium hydroxide, the	volume
	decreased to 126cm ³	
	(a) Determine the molecular formula of Q	(3m)
	(b) Write the names and the structural formulae of all isomers of Q	(2m)
	SECTION B:	
	Answer only six questions in this section	
10.	(a) An organic compound A contains carbon, hydrogen and oxygen on	ly. On
	combustion, 0.463g of A gave 1.1g carbon dioxide and 0.563g of water	er.
	Determine the empirical formula of A	(3 ½)

(b) When vaporised 0.1g of A occupies 54.5cm ³ at 208°C and	nd 98.3 kPa.
Determine the molecular formula	(2 ½)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
(a) A magata with and in matal with analytic and a case Wii	
(c) A reacts with sodium metal with evolution of a gas. Write formula of all possible isomers of A	te the structural
formula of all possible isomers of A. (2)	
	•••••
(d) A reacts with anhydrous zinc chloride and concentrated	hydrochloric acid to
give a cloudy solution in about 5 minutes	
(i) identify A	
(ii) show how A could be synthesised from but 2 - en	ne (½)
	• • • • • • • • • • • • • • • • • • • •

		e an expression for the solubility of zinc		
(b)) Deter	rmine the concentration in moles per lit	re of zinc and hydroxide ions	s in a
	satura	ated solution of zinc hydroxide at 25°C.	. (3)	
	•••••			••••
	•••••			••••
				· • • • •
(c)		how the solubility of zinc hydroxide w	ould change if its saturated	
		ion is treated separately with	(1)	
	(i)	aqueous zinc sulphate	(1)	
	(ii)	ammonia	(1)	
				••••
				••••
	•••••			
(d)	Brief	ly explain your answers in (c)	(3)	
	•••••			••••
	•••••			••••
	•••••			••••
	• • • • • • •			••••
12. (a)	Name	a reagent that can be used to distinguis	sh between the following pai	rs of
		each case, state what is observed if each		
	agent.		·	
	(i)	Ba ²⁺ and Ca ²⁺	(3)	
		Reagent		

• • • • • •	Observation	
• • • • • •		
• • • • • • •		
(ii)	NO_2^- and NO_3^-	(3)
	Reagent	
• • • • • •		
• • • • • • •		
	Observation	
• • • • • •		
• • • • • •		
Write (i)	ionic equations for the reaction bet BeO	tween sodium hydroxide and $(1\frac{1}{2})$
(1)		
• • • • • •		
 (ii)	SiO ₂	(1½)

3. A compound, B has an empirical formula of C ₃ H ₆ O. Oxygen gas diffu	ises 1.345
times faster than B.	
(a) (i) Determine the molecular formula of B	(2)
	•••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
(!!) W.:	
(ii) Write the structural formulae of all the possible isomers of B	(1)
	•••••
	•••••
	•••••
(b) (i) B does not Fellings' Solution, using equations, show how B can from propene (2 ½)	n be formed
(ii) Write an equation for the reaction of B with sodium hydrogen	sulphite and
write the mechanism	(2 ½)
	•••••

4. (a) Define the term a 'buffer solution'.	(2)
(b) Calculate the mass of sodium ethanoate that should be added	to 1 litre of a
0.1M ethanoic acid solution in order to produce a solution of pH	= 4.0
(ka for ethanoic acid = 1.8×10^{-5})	(5)
(c) State what would happen to the pH of the solution in (b) if a	small amount of
the following were added	
(i) sodium hydroxide solution	
(ii) hydrochloric acid	
(ii) ilyuloemone ueta	
	••••••
(d) State one higherinal application of a huffer solution	•••••
(d) State one biological application of a buffer solution	
	•••••

15.	Soli	mpound Y, C_3H_6O reacts with 2,4 – dinitro phenyl hydrazine to g id.	ive a yellow
	(a)	Write the structural formulae and JUPAC names of all the isome	rs of Y
	(b)	When Y is heated with Fehling's solution, a red precipitate is for	
	(c)	Write a mechanism for the reaction that would take place betwee	n Y and
		hydroxylamine, NH ₂ OH	(3)
			(3)
	(d)		
	(d)		
	(d)		

•••••		
•••••		
•••••		
•••••		
16. (a) An a	queous solution containing 7.2g of a non-cyclic substance Q	in 250g of
water fre	eezes at -0.744 °C. The freezing point constant, K, for water	is 1.86°C
mol ⁻¹ k	g^{-1}	
Calculat	e the molecular mass of Q	(3)
•••••		
•••••		
•••••		
•••••		
(b) If Q	contains carbon, 66.7% hydrogen 11.1% and oxygen 22.2%;	
(i)	Calculate the simplest formula of Q	(2)
•••••		
•••••		
•••••		
•••••		
•••••		
••••		
(ii)	Determine the molecular formula of Q	(1)
•••••		
•••••		
••••		
(iii)	Write the structures of all the possible isomers of Q	(1 ½)
•••••		

(c) Q forms a yellow precipitate with phenylhydrozine and iodine solution i		
	presence of sodium hydroxide. Identify Q.	(½)
17	. State what would be observed and write equations for the reactions	that take place
	when the following compounds are reacted.	
	(a) Aqueous potassium dichromate (VI) with hydrogen sulphite	(3)
		•••••
		•••••
	(b) Aqueous iron (III) chloride with sodium carbonate	(3 ½)
		•••••
	(c) Aqueous copper (II) sulphate with potassium iodide	(2 ½)
		•••••